
1

AST vs. CPG
The Context Divide: Why Traditional AST
Falls Short

From Structure to Semantics
Contemporary application security testing has traditionally depended upon the Abstract Syntax
Tree (AST) to examine code through parsing its structure. Although highly effective in
discovering known vulnerabilities via pattern matching, AST-based tools are less proficient at
comprehending how code behaves within the context of actual execution scenarios. With
attackers focusing more on sophisticated logic, indirect data flows, and contextual triggers, the
drawbacks of AST become ever more apparent.

Code Property Graphs (CPGs) enable a higher-level, more semantically dense method that
integrates AST with control flow and data flow analysis. CPGs transcend surface syntax to richly
comprehend a workload's behavior, intent, and logic. This enables tools like Qwiet AI to identify
subtle, elusive vulnerabilities by inspecting what code appears and how it works in context.

This side-by-side comparison offers a clear, feature-to-feature contrast between AST-based
tools like Checkmarx and Qwiet AI's CPG-based analysis. Whether you're a security engineer
researching tooling or a decision-maker looking for a more forward-thinking application and
code security solution.

A Side-by-Side Understanding

Feature
Checkmarx
(AST-based)

Qwiet (CPG-based)

Structure Focused ✅ This demonstrates the
original code structure.

✅ Encompasses AST but analyzes
more than just the written code.

Control Flow Insight ❌No ✅Includes Control Flow Graph (CFG)

Data Flow /
Dependencies

❌No
✅Includes Program Dependence Graph
(PDG)

Contextual
Understanding

⚠ Limited
✅ Deep, cross-functional,
path-sensitive

Vulnerability
Reachability

❌Pattern-only
✅ Path + flow-aware source-to-sink
tracing

Analysis Method Rule-based pattern
matching

Graph traversal and semantic queries

AI/ML Potential Narrow due to lack of
context

High Graphs encode rich behavioral data

What AST Can and Can’t Do
AST outlines the structure of how developers wrote the code, rather than how it behaves or
reacts to changes. It can tell you:

●​ A function that was declared
●​ When it calls another function
●​ When variables were assigned

While AST is adept at syntax-aware pattern
matching, its inability to comprehend the
code's behavior is a significant limitation. It's
like having a map of streets without cars,
traffic lights, or directions - just street names.
It’s the infrastructure without any of the
utilities. This limitation underscores the need
for a more advanced solution like the CPG.

Checkmarx uses this to match known
destructive code patterns, which works well for
well-understood, signature-style issues. But it
doesn’t detect new, unknown, or context-sensitive vulnerabilities.

What the CPG Adds: AST + CFG + PDG
Control Flow Graph (CFG)

●​ Shows execution paths (if/else, loops, calls)
●​ Understands the sequence in which code executes
●​ Detects unreachable code, execution dependencies

Program Dependence Graph (PDG)

●​ Shows how data moves between variables/functions
●​ Captures both control dependencies (e.g., "this happens if X") and data dependencies

(e.g., "X depends on Y")
●​ Great for identifying side effects and vulnerable data propagation

Think of CPG as a GPS that not only shows the roads (AST), but also traffic (CFG), and what cars
are carrying (PDG). This layered graph model knows every piece of code's context, path, and
purpose.

2

Why CPG Enables True Semantic Analysis
With a CPG, Qwiet can perform deep semantic queries, such as:

●​ “Find all paths where user input reaches a file write function without sanitization.”
●​ “Show me where a tainted value reaches a system API.”
●​ “Track data from this variable across function calls and returns.”

This context is not possible with just AST + pattern matching.

Reachability Analysis & Source-to-Sink Flow
Qwiet’s CPG behaves like a social network of your code, where:

●​ Nodes = code entities (functions, parameters, calls)
●​ Edges = relationships (calls, uses, assigns, returns)

So Qwiet can trace how tainted inputs (sources) move through your code to dangerous
functions (sinks) - this is source-to-sink flow analysis, essential for:

●​ SQL injection
●​ XSS
●​ Command injection
●​ Path traversal
●​ Business logic flaws

Qwiet's CPG can detect various vulnerabilities, including SQL injection, XSS, command injection,
path traversal, and business logic flaws. It does this without relying solely on known patterns,
meaning it can catch zero-days and logic errors that AST-based tools miss. This comprehensive
coverage makes CPG a powerful tool for identifying and mitigating security risks in software
applications.

Why It’s More Unique
Qwiet’s CPG is more technically sound and
accurate because it:

●​ Models real program behavior, not just
syntax.

●​ Enables graph-based AI/ML to learn how
vulnerabilities appear in practice.

●​ Modular and language-agnostic,
providing support for multiple languages
by plugging in new parsers.

3

●​ AutoFix vulnerabilities can be in context because it understands the full behavior chain.

Conclusion
AST tools like Checkmarx tell you what the code looks like. CPGs tell you what it does. This
fundamental difference makes Qwiet’s CPG more powerful, context-aware, and future-proof,
especially for catching advanced or unknown security issues. It's a tool that can keep up with
the ever-evolving landscape of software security, and we are confident in its superiority.

Review our Solution Brief: Compliance and Security Benefits for Enterprises to learn more.

4

https://3887453.fs1.hubspotusercontent-na1.net/hubfs/3887453/2025/White%20Papers/qwiet-ai_cpg-solution-brief_01.pdf

Ready to secure your codebase with Agentic AI?

Request a personalized demo to see how Qwiet AI delivers faster fixes,
fewer false positives, and more intelligent security workflows powered
by Code Property Graphs and AI AutoFix.

Request a Demo

https://go.qwiet.ai/contact_qwiet

	AST vs. CPG: From Structure to Semantics
	A Side-by-Side Understanding
	What AST Can and Can’t Do
	What the CPG Adds: AST + CFG + PDG
	Why CPG Enables True Semantic Analysis
	Reachability Analysis & Source-to-Sink Flow
	Why It’s More Unique
	Conclusion

